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Abstract 15 

Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of 16 

elevation data across large areas; however, the limited ability to penetrate dense vegetation with 17 

lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar 18 

elevation data are available, but a reliable method that requires limited field work and maintains 19 

spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with 20 

NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from 21 

freely available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study 22 

sites along the Pacific coast of the U.S., we achieved an average root mean squared error 23 
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(RMSE) of 0.072 m, with a 40-75% improvement in accuracy from the lidar bare earth DEM. 24 

Results from our method compared favorably with results from three other methods (minimum-25 

bin gridding, mean error correction, and vegetation correction factors), and a power analysis 26 

applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to 27 

calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using 28 

freely available data and with minimal field surveys, we showed that lidar-derived DEMs can be 29 

adjusted for greater accuracy while maintaining high (1 m) resolution. 30 

  31 

Keywords: RTK-GPS surveys, accuracy, LEAN, Normalized Difference Vegetation Index 32 

(NDVI), sea-level rise 33 

 34 

Introduction 35 

The structure and function of tidal marshes are strongly driven by physical gradients 36 

including elevation and tidal range. Elevation, relative to mean sea level, is responsible for 37 

variation in abiotic features like accretion rates (Butzeck et al., 2014), soil characteristics 38 

(Cahoon and Reed, 1995), pore water salinity, and oxygen availability (Hackney et al., 1996). 39 

Tidal marsh plants and animals have numerous adaptations for surviving these gradients in 40 

physical conditions (Pennings et al., 1992; Silvestri et al., 2005); however, the elevation range in 41 

which species can persist is often narrow (< 1 m). In addition, small changes in marsh elevation 42 

can lead to large increases in inundation time under normal tidal cycles. Consequently, accurate 43 

characterization of elevation is critical for understanding tidal marsh ecogeomorphology, and 44 

tidal marsh structure and function are especially sensitive to changes in relative elevation due to 45 

sea level rise (Kirwan and Temmerman, 2009; Kolker et al., 2009).   46 
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Growing concern about the effects of climate change and sea-level rise on tidal marsh 47 

sustainability has increased interest in creating accurate digital elevation models (DEMs) of tidal 48 

marshes to better inform modeling and planning efforts. Airborne light detection and ranging 49 

(lidar) is a common tool used to generate DEMs and is becoming more readily available to 50 

coastal managers and scientists. High point return densities (1-10 points/m) and relative ease of 51 

data collection across large areas have made lidar a popular option for measuring bare earth 52 

elevation and vegetation height (Hodgson and Bresnahan, 2004; Kane et al., 2010). In areas with 53 

low vegetative cover (e.g., open terrain or concrete), the vertical accuracy of airborne lidar is 54 

between 15-25 cm root mean squared error (RMSE, eq. 2; Hodgson and Bresnahan 2004, 55 

Mitasova et al. 2009), with normally distributed errors (mean error approaching zero). However, 56 

the inability of the laser pulse to penetrate the dense vegetation canopy of most tidal marshes 57 

limits the accuracy of lidar-derived DEMs (Montané and Torres, 2006; Rosso et al., 2005; Sadro 58 

et al., 2007; Schmid et al., 2011; Hladik and Alber, 2012).  For example, one study found that 59 

just 3% of lidar points were reflected off the marsh surface (Sadro et al., 2007), and another 60 

found that error in tidal marshes was greater than in adjacent upland habitats (Schmid et al., 61 

2011), creating a positive bias in mean elevation of 10-40 cm (Sadro et al., 2007; Foxgrover et 62 

al., 2011; Hladik and Alber, 2012). Even lidar collected during periods of seasonally low 63 

biomass in tidal marshes can exhibit significant (>20 cm) vertical errors (Schmid et al., 2011). 64 

Correcting vertical errors is necessary for accurate predictions of flooding risk, marsh elevation 65 

change under sea-level rise, or any application where inundation is of primary concern. 66 

Several methods have been used to correct lidar error in tidal marshes, including 67 

vegetation correction factors (Hladik and Alber, 2012), minimum-bin gridding (Schmid et al., 68 

2011), an aboveground biomass model (Medieros et al., 2015), and statistical correction of full 69 
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waveform lidar (Parrish et al., 2014); however, each of these methods have limitations that may 70 

hinder broad adoption. Vegetation correction factors require extensive vegetation surveys or 71 

expert knowledge of a marsh coupled with high accuracy GPS surveys to correlate lidar error 72 

with plant communities (Hladik and Alber 2012; overall RMSE = 0.1 m). Hyperspectral data can 73 

be useful in species and community classification in wetlands (Rosso et al., 2005; Sadro et al., 74 

2007; Adam et al., 2010), but those data are not widely available and expensive to acquire. In 75 

addition, plant height and cover can vary substantially across elevation and salinity gradients, 76 

potentially requiring multiple corrections for a single species or community. Minimum-bin 77 

gridding (MBG) uses the minimum lidar return value within a predefined grid pixel to set the 78 

value for the DEM; as pixel size increases lidar error generally decreases as more low values are 79 

included; however, horizontal resolution of the DEM decreases and because so few lidar returns 80 

hit the marsh platform, a positive bias remains (Schmid et al. 2011; RMSE = 0.17 m). Medieros 81 

et al. (2015) used a combination of remote sensing datasets (ASTER imagery and interferometric 82 

synthetic aperture radar, InSAR) in a Florida tidal marsh to model aboveground biomass density 83 

and then correct lidar error. They achieved a 38% reduction in RMSE at 5-m horizontal 84 

resolution (0.65 to 0.40 RMSE). In addition to Real-Time Kinematic (RTK) GPS surveys, the 85 

biomass model requires labor-intensive vegetation sampling that may require destructive 86 

sampling if allometric equations for biomass are not available. Relying on two statistical models, 87 

each with a measure of uncertainty, may also limit the accuracy of the adjusted DEM. Vertical 88 

correction of full waveform lidar using waveform features is promising (Parrish et al., 2014), 89 

however, broad collection of waveform lidar is still relatively rare and it requires extensive 90 

processing skills; we focus our analysis on DEMs derived from discrete return lidar. 91 
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Our objective was to develop a correction model for lidar-derived DEMs using readily 92 

available, high resolution (1 m), multispectral (red, green, blue, near-infrared) airborne imagery 93 

from the US Department of Agriculture (USDA) National Agriculture Inventory Program 94 

(NAIP). Derived products from the NAIP imagery, such as the Normalized Difference 95 

Vegetation Index (NDVI), correlate well with the spatial variation in vegetation biomass and 96 

structure (Gamon et al., 1995; Myneni et al., 1995; Filella et al. 2004; Pettorelli et al. 2005), and 97 

we tested the ability of NDVI to calibrate a statistical model of lidar error when used in 98 

conjunction with baseline elevation datasets (e.g., RTK-GPS surveys). We developed a statistical 99 

model of lidar error for a gradient of study sites in 17 tidal marsh sites along the Pacific coast. 100 

We applied the models and compared them to RTK-GPS field data to assess DEM accuracy, and 101 

we compared the performance of our model against other commonly applied correction 102 

techniques. Finally, we determined the minimum density of RTK-GPS data points necessary to 103 

achieve a DEM with maximum accuracy and tested the sensitivity of the statistical model to use 104 

NAIP images from years different than when the lidar data were collected. 105 

 106 
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 107 

Fig. 1. Location of 17 tidal marsh study sites along the Pacific coast of the United States. Study 108 

sites represented a range of dominant tidal marsh vegetation, climate, and tidal ranges to test the 109 

applicability of model corrections across different vegetation types. 110 

 111 

2. Methods 112 

2.1. Study Area 113 

Our study included 17 tidal marsh sites located in eleven estuaries where both lidar data 114 

and NAIP imagery were available (Fig. 1, Table 1). Sites were chosen to be representative of 115 

historic marsh conditions and many were on U.S. Fish and Wildlife Service National Wildlife 116 
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Refuges (NWRs). While each study site had unique ecological and geomorphic characteristics, 117 

for broad comparisons they were grouped into three regions. Pacific Northwest (PNW) sites 118 

included: Grays Harbor NWR (hereafter Grays Harbor); Tarlet Slough in Willapa Bay NWR 119 

(Willapa); Millport Slough in Siletz Bay NWR (Siletz); Bull Island within the South Slough 120 

National Estuarine Research Reserve in Coos Bay (Bull Island); and the Bandon marsh unit in 121 

Bandon NWR in the Coquille Estuary (Bandon). San Francisco Bay (SFB) sites included: Black 122 

John marsh (Black John) and Petaluma marsh (Petaluma) on the west shore of the Petaluma 123 

River at the northwest corner of San Pablo Bay; Coon Island and Fagan along the Napa river; 124 

San Pablo NWR (San Pablo) along the north shore of San Pablo Bay; China Camp State Park 125 

along the south shore of San Pablo Bay (China Camp); and the Corte Madera Marsh Ecological 126 

Reserve (Corte Madera) on the west shore of Central San Francisco Bay. Southern California 127 

(SCA) sites included: Morro Bay State Park (Morro); Naval Air Station Point Mugu (Mugu); 128 

Seal Beach NWR (Seal Beach); Upper Newport Bay Nature Preserve (Newport); and Tijuana 129 

Slough NWR (Tijuana). Tidal range increases with latitude, ranging from 1.75 m at Tijuana in 130 

the south, to 2.79 m at Grays Harbor in the north (tidesandcurrents.noaa.gov). 131 

 132 

Table 1. Characteristics of study sites used to correct lidar data for coastal tidal marshes using 133 
NAIP imagery. Area (ha), number of RTK-GPS points and year collected, lidar and NAIP 134 
acquisition months, and dominant vegetation. More specific acquisition dates could not be 135 
determined from available metadata at Bull Island and Bandon, and we could only determine a 136 
range of dates for San Francisco Bay. Species are listed if they were found in at least 25% of 137 
vegetation survey plots (Takekawa et al., 2013, Thorne et al., 2015, Thorne et al., 2016).  138 

Site 
Area 
(ha) 

RTK-
GPS (n) 

RTK 
Year 

Lidar 
Acq. 

NAIP 
Acq. Dominant Vegetation 

Pacific Northwest  
  Grays Harbor 68 1166 2012 9/2009 9/2009 CarLyn, ArgSto, TriMar, PotAns 
  Willapa 27 420 2012 9/2009 9/2009 DisSpi, SalPac, TriMar, DesCep, CarLyn 
  Siletz 69 1113 2014 9/2009 6/2009 ArgSto, CarLyn, DisSpi, PotAns, JunBal 
  Bull Island 97 1166 2012 2008 6/2009 CarLyn, SalPac, DisSpi, DesCep 
  Bandon 97 1495 2012 2008 6/2009 SalPac, DisSpi, DesCep, CarLyn, AgrSto 
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San Francisco Bay 
  Petaluma 81 623 2009 2-4/2010 6/2010 SalPac, SpaFol 
  Black John 31 203 2009 2-4/2010 6/2010 SalPac, SpaFol 
  San Pablo 147 374 2009 2-4/2010 6/2010 SalPac, SpaFol 
  Fagan 68 578 2010 2-4/2010 5/2010 SalPac, BolMar, PotAns 
  Coon Island 99 728 2009 2-4/2010 5/2010 SalPac, BolMar 
  China Camp 97 697 2009 2-4/2010 5/2012 SalPac, SpaFol 
  Corte Madera 45 399 2010 2-4/2010 5/2012 SalPac, SpaFol 
Southern California 
  Morro 154 2247 2013 10/2009 6/2009 SalPac, JauCar 
  Mugu 109 1465 2013 11/2009 6/2009 SalPac, FraSal 
  Seal Beach 266 3208 2011 9/2009 6/2009 SalPac FraSal, SpaFol 
  Newport 60 962 2012 9/2009 6/2009 SalPac, SpaFol, BatMar 
  Tijuana 62 896 2011 11/2009 6/2009 SalPac, JauCar, FraSal, DisSpi 
Species codes are: CarLyn = Carex lyngbyei; ArgSto = Agrostis stolonifera; TriMar = Triglochin maritima; PotAns 139 
= Potentilla anserine; DisSpi = Distichlis spicata; DesCep = Deschampsia cespitosa; JunBal = Juncus balticus; 140 
SalPac = Salicornia pacifica; SpaFol = Spartina foliosa; JauCar = Jaumea carnosa; FraSal = Frankenia salina; 141 
BatMar = Batis maritima; BolMar = Bolboschoenus maritimus.  142 

 143 

Plant community composition and species richness varies substantially in marshes along 144 

the Pacific coast (Table 1). The PNW sites are comparatively species rich with a mix of salt, 145 

brackish, and fresh water sedges, grasses and rushes (Thorne et al., 2015). In SFB, the higher 146 

salinity sites (San Pablo, China Camp, Corte Madera, Black John and Petaluma) are dominated 147 

by Salicornia pacifica (mean height 20 cm), that creates dense mats at mid-high elevations, with 148 

Schoenoplectus spp. (mean height 86 cm) and Spartina foliosa and invasive Spartina alterniflora 149 

hybrids (mean height 91 cm) in lower elevations and along channels. The more brackish sites 150 

(Coon Island and Fagan) have higher species richness, with Schoenoplectus spp., Typha 151 

angustifolia (mean height 108 cm), and Potentilla anserina (mean height 26 cm) also common 152 

(Takekawa et al., 2013). The SCA sites are characterized by high salinity and plants with a 153 

shorter growth forms including Salicornia pacifica (mean height 33 cm), Batis maritima (mean 154 

height 20 cm), and Distichlis spicata (mean height 14 cm; Thorne et al., 2016). 155 

2.2. RTK-GPS surveys 156 
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We conducted elevation surveys using survey-grade GPS rovers (RTK GPS, 2-5 cm 157 

vertical accuracy, Leica Viva GS15 and Leica GX1230, Atlanta, GA, USA) and referenced the 158 

rovers to nearby National Geodetic Survey (NGS) benchmarks. Real-time corrections were 159 

provided by the Leica SmartNet station network in SFB, while in Oregon the Oregon Real-Time 160 

GNSS Network (ORGN) provided corrections. In SCA and Washington, we deployed a Leica 161 

GS10 base station with a radio link at a temporary benchmark that provided real-time corrections 162 

to the Leica Viva GS15 rover. We surveyed nearby NGS benchmarks for vertical control. We 163 

submitted the temporary benchmark locations to the NGS Online Positioning User Service that 164 

uses the precise ephemeris from the GPS satellite network to provide accurate (< 2 cm) 165 

temporary benchmark locations. We surveyed elevations at stations placed on gridded transects 166 

that ran perpendicular to the marsh-mudflat boundary. Transects were separated by 50 m and 167 

RTK sample stations were located every 25 m (SFB) or 12.5 m (PNW and SCA) on each transect 168 

for a density of 7-14 points per hectare. We used the geoid09 gravitational model to convert 169 

ellipsoid heights to North American Vertical Datum of 1988 (NAVD88) for the SFB and SCA 170 

sites, and used the geoid03 model for the PNW sites, matching the geoid models used in each 171 

lidar datasets. Across all sites the mean RMSE of the RTK–GPS surveys was 0.046 m. 172 

For this study, we were interested in correcting the positive bias across the marsh 173 

platform and not in correcting possible bias in unvegetated marsh channels or mudflats. The 174 

RTK-GPS dataset used in this study were originally meant for developing DEMs through 175 

interpolation and included points that were near topographically steep features (channels and 176 

scarps). We manually removed RTK-GPS points from the dataset that were within 2 pixels (m) 177 

of marsh channels or platform edge and likely subject to error due to pixel resolution (i.e., the 178 
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lidar DEM pixel represented the side or bottom of a steep channel while the RTK-GPS point is 179 

on the marsh platform adjacent to the channel). 180 

2.3. Airborne lidar data 181 

We obtained lidar-derived DEMs from the NOAA Digital Coastal Data Access Viewer 182 

(https://coast.noaa.gov/dataviewer/; Table 2). We used the local UTM (zone 10 or 11) for the 183 

horizontal datum, and NAVD88 for the vertical datum. We selected mean grid averaging of all 184 

lidar returns at 1 m resolution. Our goal was to use ‘as-received’ lidar DEMs to eliminate any 185 

lidar processing from the workflow and to maximize the accessibility of the procedure. We 186 

determined lidar elevation at each RTK-GPS location with the ‘extract’ function in the ‘raster’ 187 

package in R (www.r-project.org). 188 

 189 

Table 2. Flight characteristics and accuracy of lidar data. 190 

  

San 
Francisco 

Bay 

CA State 
Coastal 

Conservancy DOGAMI  

Contractor Fugro 
EarthData 

Fugro 
EarthData 

Watershed 
Sciences 

Sensor Leica ALS60 
MPiA 

Leica ALS60 
MPiA 

Leica ALS50 
Phase II 

Points/m 1 1 8.60 
RMSE (m, open 
terrain) 0.026 0.048 0.044 

Geoid Model Geoid09 Geoid09 Geoid03 
Flightline overlap 
(%) 20 20 50 

Altitude (m) 2000 1900 900 
Field of View 
(degrees) 30 30 28 

Pulse Rate (Hz) 121,300 121,300 105,000 
Scan Rate (Hz) 41 41 52.2 
Returns Discrete Discrete Discrete 
Abbreviation SFB SCA PNW 

 191 

 192 
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 199 

 200 

2.3. Multispectral imagery 201 

We obtained multispectral airborne imagery data for each site from the National 202 

Agriculture Imagery Program (NAIP, 1 m resolution; USDA Farm Service Agency). NAIP 203 

imagery is collected for each state on a rotating basis, roughly every two years and typically at 204 

the peak of the growing season. We preferentially chose imagery that was collected during the 205 

same year that lidar was flown to minimize potential error due to annual variation in plant 206 

productivity (Table 1). While the majority of our sites had imagery and lidar data collected in the 207 

same year, there were three exceptions. At two sites (Bandon, Bull Island) imagery was not 208 

available for 2008, so we used 2009 imagery instead. At China Camp and Corte Madera part of 209 

the 2010 image for the marsh was taken at high tide resulting in an uneven image; we instead 210 

used 2012 imagery for China Camp and Corte Madera. To assess the quality of georeferencing of 211 

the NAIP imagery, we visually compared NAIP and lidar landscape features (channels, roads, 212 

buildings) at each site. We found the 2009 and 2010 NAIP images aligned with the lidar and 213 

made no adjustments. The 2011 and 2012 NAIP imagery, however, were misaligned with the 214 
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lidar; in ArcGis we shifted those NAIP datasets slightly (< 3 m) to align with the lidar datasets, 215 

using 1-2 points across the marsh as ground control.  216 

The USDA releases full county, color-corrected mosaics of their NAIP imagery; 217 

however, the near-infrared band is removed and image compression reduces image fidelity. We 218 

instead used multiple unadjusted 4-band quarter quads at each study site for full coverage. We 219 

mosaicked together quarter quads in ENVI (v. 5, Exelis Inc, Boulder, CO, USA) using histogram 220 

matching of overlapping scenes to correct for differences in brightness across images. We then 221 

applied a dark object subtraction using the histogram of each band to correct for atmospheric 222 

interference (Chavez, 1988). From the NAIP imagery, we calculated the Normalized Difference 223 

Vegetation Index (NDVI), as: 224 

𝐍𝐍𝐍𝐍 =  𝐍𝐍𝐍−𝐍
𝐍𝐍𝐍+𝐍

      Eq. 1. 225 

where, NIR is the near-infrared band (750 nm, band 4), and R is the red band (650 nm, 226 

band 3). NDVI is a relative index that ranges from -1 to 1, with values above 0 generally 227 

considered to be vegetated. While not an issue at our study sites, NDVI can saturate at high 228 

values; in areas where this occurs we suggest using the Wide Dynamic Range Vegetation Index 229 

instead. NDVI is also sensitive to electromagnetic absorption from water, thus it is important to 230 

use imagery collected during low tides.   231 

 232 

2.4. Accuracy Assessment  233 

Following the accuracy assessment guidelines from Maune et al. (2007) and the National 234 

Standard for Spatial Data Accuracy (Federal Geographic Data Committee, 1998), we used root 235 

mean squared error (RMSE), Fundamental Vertical Accuracy (FVA), and the 95th Percentile 236 

Error (PE) as metrics of DEM accuracy (Flood, 2004). RMSE is calculated as: 237 
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   𝐍𝐑𝐑𝐑 = 𝐬𝐬𝐬𝐬[∑(𝐳𝐥𝐥𝐥𝐥𝐬𝐥 − 𝐳𝐍𝐑𝐑𝐥)𝟐/𝐧]    Eq. 2 238 

where, zlidari is the elevation of the lidar-derived DEM at ith RTK-GPS point, zRTKi is the 239 

elevation of the ith RTK-GPS point, n is the number of RTK-GPS points, and i is an integer (1 - 240 

n). RMSE is a common statistic used to determine the difference between two datasets and can be 241 

interpreted as the standard deviation if errors are normally distributed (NDEP, 2004). If errors 242 

are not normally distributed, then interpretation of RMSE is simply the magnitude of error. FVA 243 

is the 95% confidence interval for RMS and is calculated by RMSE*1.96. PE is defined as the 244 

absolute value that is greater than 95% of dataset. RMSE and FVA are only appropriate if errors 245 

follow a normal distribution; otherwise PE should be used (Flood 2004). We calculated the 246 

skewness of error of the original and adjusted DEMs, and following Flood (2004), considered 247 

error distributions normal if skewness was within the range [-0.5, 0.5]. We also calculated mean 248 

error (ME) as a measure of bias in the original and adjusted lidar DEMs  249 

𝐑𝐑 =  ∑ (𝐥𝐥𝐥𝐥𝐬 𝐞𝐥𝐞𝐞𝐥𝐬𝐥𝐞𝐧−𝐍𝐑𝐑𝐑𝐑𝐑 𝐞𝐥𝐞𝐞𝐥𝐬𝐥𝐞𝐧)
𝐧

           Eq. 3 250 

where, n is the number of RTK-GPS points.  251 

2.5. Model development 252 

We used a site-specific, multivariate approach to model the relationship between lidar 253 

error, determined by subtracting the lidar DEM from the RTK-GPS data, NAIP-derived 254 

vegetation indices, and lidar elevation. Specifically, the model was defined as:  255 

    E = l + v + v2 + l*v + l*v2 + v2*v + l*v*v2  Eq. 4 256 

where, E is the error (lidar elevation minus RTK-GPS elevation), l is the uncorrected lidar DEM 257 

elevation, and v is the NDVI. The model is fit to a training dataset using least-squares regression. 258 

We define this technique (Eq. 4) as the Lidar Elevation Adjustment with NDVI method 259 

(hereafter, the LEAN method).  260 
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To test the sensitivity of LEAN to particular RTK-GPS points, we ran a 100-fold cross 261 

validation analysis, randomly withholding 30% of the dataset for testing in each iteration. We 262 

calculated the average model correction from the individual cross-validation runs and reported 263 

the standard deviation of percent improvement in RMSE compared with the original lidar-264 

derived DEM. To develop the best possible LEAN model, we trained the final NAIP model 265 

using the entire RTK-GPS dataset for each site.  266 

We produced an adjusted DEM by applying LEAN to the lidar DEM and NDVI from the 267 

NAIP image. This was accomplished by converting the raster values of the aligned lidar DEM 268 

and NDVI datasets to numeric vectors and using the ‘predict’ function in base R to generate 269 

predictions of lidar error. The predicted lidar error was then subtracted from the original lidar 270 

DEM to produce an adjusted DEM of the marsh platform. To restrict model corrections to areas 271 

above the elevation of the mudflat and channels, we determined a site-specific marsh elevation 272 

height from inspection of the original lidar and NAIP imagery (Table 4). The final DEM was a 273 

mosaic of the LEAN-adjusted DEM above the marsh elevation height, and the original lidar 274 

DEM below the marsh elevation height. Our calibration RTK-GPS dataset did not include data 275 

from the channels (sides nor bottoms) or mudflats; we assumed any error in these areas were not 276 

due to dense vegetation and therefore LEAN was not appropriate for making adjustments to the 277 

DEM.  278 

The timing of lidar acquisition is an important factor when considering effects of marsh 279 

vegetation on lidar returns. To assess the importance of concurrent (same year) lidar collection 280 

and NAIP imagery, we compared performance of models trained using NAIP images from 281 

different years than the lidar was flown at a subset of sites (Coon Island, Fagan, Mugu, Petaluma, 282 
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Siletz, Tijuana). We analyzed the difference in RMSE between the correction models using a 283 

paired t-test (α=0.05).  284 

Seasonal differences in vegetation height and density due to phenology are important in 285 

the context of vertical lidar error. To make our technique as broadly applicable as possible, we 286 

relied on readily available NAIP imagery that was collected in a different season than the lidar 287 

acquisition at several of our sites (Table 1). Our goal was not to directly infer aboveground 288 

biomass in our models, but rather to use the NAIP imagery as an indicator of spatial variability in 289 

vegetation height and density. Our approach assumes that the spatial variability detected in the 290 

NAIP imagery correlates with the variability in plant height and density when the lidar was 291 

flown (e.g., the location of dense vegetation in June is reasonably correlated with the location of 292 

dense vegetation in October). As we are relying on site-specific data to calibrate the correction 293 

model, only the relative magnitude of the NDVI signal across marsh is important, rather than the 294 

absolute value, thereby reducing the effect of seasonal differences in lidar and NAIP collection 295 

in our model. Caution should be used in areas with substantial senescence of vegetation when 296 

there is seasonal mismatch between lidar and multispectral imagery acquisitions.  297 

 298 

2.6. Comparison of LEAN to Alternative Models 299 

We compared LEAN to three published methods for adjusting lidar derived DEMs; 300 

minimum-bin gridding (MBG), mean error correction (MEC), and vegetation correction (VC). 301 

We compared LEAN to MBG and MEC across all our sites. For MBG, we acquired 5 m 302 

resolution lidar DEMs from NOAA’s Coastal Data Viewer using the minimum grid averaging 303 

option. We then estimated the RMSE and mean error between the RTK-GPS elevation and 304 

elevation of the 5-m DEM at each RTK-GPS location. For MEC, we subtracted the mean 305 
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difference between the 1-m lidar DEM and the RTK-GPS elevation from the original DEM. We 306 

then calculated the RMSE and ME for the MEC DEM. As MEC only uses RTK-GPS data, the 307 

difference in performance between MEC and LEAN represent the benefit for including NDVI 308 

from NAIP imagery into a correction model. For the three correction models (LEAN, MBG, 309 

MEC), we randomly subset the RTK data into 70% training and 30% testing datasets and used a 310 

100-fold cross validation compare model performance. For two sites in SFB (China Camp and 311 

Coon Island), we also compared the RMSE of an existing VC DEM (Schile et al., 2014) with the 312 

RMSE from LEAN using our RTK data. The existing VC DEMs were created from the same 313 

SFB lidar dataset used in this study. We used paired t-tests (α=0.05) to compare the RMSE from 314 

the alternative methods with LEAN, and one-way ANOVAs to compare initial and adjusted 315 

RMSE across regions.  316 

2.7. Power Analysis 317 

Finally, we conducted a power analysis to estimate the minimum number of RTK-GPS 318 

points necessary to create a LEAN model that was statistically equivalent to the cross-validated 319 

LEAN model. For each site we randomly stratified RTK-GPS points into four classes, above and 320 

below mean lidar elevation and mean NDVI value, selecting an increasing number of points per 321 

class and replicating the subset 1000 times. We then determined the number of RTK-GPS points 322 

that would calibrate a model with a RMSE within 1 cm of the mean cross-validated RMSE. We 323 

calculated the mean, standard deviation and median of the lowest number of points per site. We 324 

conducted all analysis and model development using R version 3.2.2 (http://cran.r-project.org) 325 

and ArcGIS (version 10.1, ESRI, Redlands, CA). 326 

 327 

3. Results 328 
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3.1 RTK-GPS Surveys 329 

After removing points outside the marsh platform, a total of 17,740 RTK-GPS points 330 

across all sites were included in model development and analysis. Sites had an average of 96.0% 331 

(SD = 7.7) of their RTK-GPS elevations lower than the lidar DEM, indicating that vegetation 332 

biased lidar returns across all our study sites. Even when accounting for 5 cm of RTK-GPS 333 

measurement error, sites had an average of 88.9% (SD = 15.5) points that were lower than the 334 

lidar DEM. Across all sites, ME for lidar was 0.208 m (SD = 0.109) and RMSE was 0.231 m 335 

(SD = 0.010) (Table 3).  336 

 337 

Table 3. Uncorrected lidar data root mean squared error (RMSE),initial mean error (ME), and 338 
fundamental vertical accuracy (FVA), 95th Percentile Error (PE, with standard deviation) from 339 
the training data, and mean (SD) Normalized Difference Vegetation Index (NDVI) for 17 study 340 
sites along the Pacific coast of the United States. Lidar error was calculated by subtracting RTK-341 
GPS elevations from a 1-m lidar DEM for each study site. Sites where the skewness of the error 342 
distribution exceeds [-0.5, 0.5] are denoted with *. 343 

Site RMSE ME FVA PE NDVI Mean (SD) 
Pacific Northwest 

      Grays Harbor 0.466 0.419 0.912 0.871 (0.017) 0.228 (0.156) 
  Willapa* 0.392 0.382 0.768 0.501 (0.008) 0.203 (0.101) 
  Siletz* 0.304 0.269 0.596 0.434 (0.010) 0.410 (0.067) 
  Bull Island* 0.145 0.078 0.284 0.476 (0.15) 0.138 (0.099) 
  Bandon* 0.118 0.016 0.232 0.243 (0.004) 0.289 (0.127) 
PNW Mean 0.285 0.233 0.560 0.505 (0.011) 0.254 (0.057) 
San Francisco Bay 

      Petaluma* 0.289 0.282 0.566 0.382 (0.004) 0.259 (0.058) 
  Black John 0.278 0.264 0.546 0.418 (0.011) 0.222 (0.053) 
  San Pablo 0.265 0.253 0.520 0.374 (0.003) 0.385 (0.094) 
  Fagan 0.256 0.242 0.502 0.376 (0.006) 0.339 (0.094) 
  Coon Island 0.273 0.260 0.535 0.401 (0.007) 0.348 (0.075) 
  China Camp 0.233 0.228 0.457 0.309 (0.003) 0.155 (0.047) 
  Corte Madera 0.182 0.228 0.357 0.367 (0.008) 0.218 (0.068) 
SFB Mean 0.254 0.251 0.498 0.375 (0.006) 0.275 (0.070) 
Southern California 

      Morro* 0.109 0.082 0.214 0.216 (0.002) 0.011 (0.137) 
  Mugu 0.155 0.154 0.303 0.266 (0.003) 0.238 (0.142) 
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  Seal Beach* 0.168 0.147 0.329 0.295 (0.003) 0.347 (0.123) 
  Newport 0.183 0.140 0.358 0.352 (0.008) 0.235 (0.126) 
  Tijuana* 0.113 0.084 0.221 0.209 (0.006) 0.239 (0.074) 
SCA Mean 0.145 0.121 0.285 0.268 (0.004) 0.214 (0.120) 
Overall Mean 0.231 0.208 0.453 0.382 (0.007) 0.251 (0.097) 

 344 

3.2 Lidar data 345 

Lidar error varied across study regions and between sites within regions (Fig. 2). Grays 346 

Harbor and Willapa had higher initial lidar RMSE, while Bull Island, Bandon, Mugu and Tijuana 347 

had lower initial RMSE. The higher point density of the PNW lidar dataset (8 pts/m vs. 1 pt/m) 348 

did not appear to have an effect on lidar error, as Willapa and Grays Harbor had the highest lidar 349 

error while Bull Island and Bandon had some of the lowest error. 350 

 351 
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 352 

Fig. 2. Boxplot of uncorrected lidar error (top) and errors from Lidar Elevation Adjustment using 353 
NDVI (LEAN) corrections (bottom) across study sites. Lidar error was calculated by subtracting 354 
RTK-GPS elevation from the lidar DEM. Box shading designates region (light grey: Pacific 355 
Northwest, white: San Francisco Bay, dark grey: Southern California). Sites are ordered from 356 
north to south. 357 

 358 

Initial RMSE across the PNW sites and the SFB sites were significantly greater than the 359 

initial RMSE across the SCA sites (PNW vs. SCA, t = 2.39, df = 8, p = 0.044; SFB vs. SCA, t = 360 
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5.29, df = 10, p < 0.0001). While the PNW sites had a larger range of initial RMSE, it was not 361 

significantly different than the SFB initial RMSE (t = 0.78, df = 10, p = 0.45). Mean initial 362 

RMSE across all site was 0.231 m (sd = 0.098). 363 

3.3. DEM correction 364 

The LEAN model reduced lidar bias by an average of 58.5% across all sites, ranging 365 

from 40-75% (Table 3). The mean RMSE after LEAN correction across all sites was 0.072 m (sd 366 

= 0.018). LEAN successfully eliminated the positive bias in lidar error (Fig. 3); ME across all 367 

sites was 0 (sd = 0.065). Mean percent improvement in RMSE using LEAN varied significantly 368 

across regions (ANOVA, F2, 14 = 5.05, p = 0.022).  369 
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 370 

Fig. 3. Positive bias in lidar DEM before Lidar Elevation Adjustment using NDVI  (LEAN) 371 
correction (top) and after LEAN correction (bottom), with a 1:1 line. Units in m, NAVD88.  372 

 373 

 374 

 375 

 376 

 377 

 378 
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Table 4. Lidar Elevation Adjustment using NDVI (LEAN) corrected DEM accuracy statistics for 379 
17 tidal marshes along the Pacific Coast of the United States. Root mean squared error (RMSE) 380 
for LEAN-corrected DEMs using all RTK-GPS points, Mean RMSE (standard deviation) from 381 
100-fold cross validation, mean error (ME), fundamental vertical accuracy (FVA), 95th 382 
Percentile Error (PE, with SD), and percent improvement in PE. Sites where the skewness of the 383 
error distribution exceeds [-0.5, 0.5] are denoted with *. 384 

 385 

Site 
RMSE 

(All Pnts) 
RMSE Mean 

(SD) ME FVA 
PE Mean 

(SD) % Imp. PE 

Mudflat 
Elevation 

(m) 
Pacific Northwest 

     
 

  Grays Harbor 0.118 0.121 (0.005) 1.77E-15 0.236 0.231 (0.010) 73.4 2.1 
  Willapa 0.079 0.072 (0.011) 5.50E-16 0.141 0.126 (0.015) 74.9 2.2 
  Siletz* 0.090 0.092 (0.006) -5.86 E-15 0.181 0.182 (0.019) 58.0 2.3 
  Bull Island* 0.076 0.080 (0.006) -2.01E-16 0.156 0.150 (0.009) 42.5 1.7 
  Bandon 0.069 0.071 (0.004) 8.93E-16 0.138 0.139 (0.007) 42.6 1.5 
PNW Mean 0.086 0.087 (0.006) 0.000 0.170 0.166 (0.013) 58.3 - 
San Francisco Bay 

     
 

  Petaluma* 0.056 0.069 (0.028) 2.00E-15 0.135 0.110 (0.009) 71.2 1.3 
  Black John 0.071 0.081 (0.012) 3.01E-15 0.158 0.136 (0.014) 67.4 1.3 
  San Pablo 0.070 0.075 (0.011) 1.04E-14 0.146 0.142 (0.014) 62.1 1.3 
  Fagan 0.064 0.070 (0.013) 3.36E-15 0.138 0.127 (0.013) 66.3 1.3 
  Coon Island* 0.070 0.071 (0.004) -9.86E-15 0.140 0.144 (0.011) 64.0 1.3 
  China Camp 0.051 0.054 (0.004) 7.74E-16 0.106 0.099 (0.008) 67.9 1.3 
  Corte Madera 0.057 0.062 (0.009) -1.77E-15 0.122 0.150 (0.012) 59.0 1.3 
SFB Mean 0.063 0.069 (0.012) 0.000 0.135 0.130 (0.012) 65.4 - 
Southern California 

     
 

  Morro 0.056 0.057 (0.003) 1.06E-15 0.112 0.113 (0.008) 47.8 1.3 
  Mugu 0.049 0.049 (0.001) -5.94E-16 0.096 0.107 (0.005) 59.7 1.3 
  Seal Beach 0.074 0.074 (0.002) 7.39E-15 0.146 0.149 (0.006) 49.6 1.3 
  Newport* 0.102 0.104 (0.008) -5.61E-16 0.203 0.211 (0.019) 40.0 1.2 
  Tijuana* 0.064 0.065 (0.004) -1.94E-15 0.127 0.123 (0.011) 41.1 1.3 
SCA Mean 0.069 0.070 (0.004) 0.000 0.137 0.142 (0.010) 47.6 - 
Overall Mean 0.072 0.076 (0.008) 0.000 0.138 0.143 (0.011) 58.1 - 

 386 

3.4. Alternative Models 387 

Mean RMSE across the sites calibrated with alternative year NDVI data was 0.059 m 388 

(SD=0.005), while the mean RMSE of models calibrated with the NDVI from the same year as 389 

the lidar was 0.065 m (SD=0.009). Correlation in NDVI between years ranged from moderate 390 
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(0.52) to low (0.028) with a mean of 0.20. There was no significant difference in RMSE between 391 

the alternative NDVI year models and the models with the original NDVI (paired t-test; t = 1.50, 392 

df =4, p = 0.103).   393 

The MGB, MEC, and VC lidar correction methods reduced the RMSE of the lidar data, 394 

but not as much as the LEAN method when compared to the RTK-GPS elevation points. 395 

Correcting the lidar DEM with the MEC reduced RMSE to an average of 0.096 m (CI = 0.188 396 

m), that was significantly greater than the RMSE using LEAN (paired t-test, t = 2.79, df = 16, p 397 

= 0.007; Table 4). MBG at 5 m resolution increased mean RMSE across sites to 0.271 m, and 398 

ME was positively biased at 0.065 m. At a few sites (Newport, Tijuana), MBG reduced signed 399 

mean error to within ±5 cm of 0, however, the RMSE was > 0.2 m (Table 5). At China Camp, 400 

RMSE of the VC DEM was 0.12 m, compared to 0.051 m RMSE achieved using LEAN, while 401 

at Coon Island, RMSE of the VC DEM was 0.084 m compared to a RMSE of 0.070 m using 402 

LEAN. 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 
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Table 5. Estimated error for alternative methods for correcting lidar digital terrain models. Mean 414 
Error Correction (MEC) root mean error squared (RMSE, m; with standard deviation), 5 m 415 
minimum bin gridding (MBG) RMSE (m; SD), and 5 m MBG mean error (m; SD) are reported 416 
from the 100-fold cross validation models. 417 

Site MEC RMSE MBG RMSE MBG Mean Error 
Pacific Northwest 
  Grays Harbor 0.204 (0.010) 0.360 (0.014) 0.271 (0.012) 
  Willapa 0.089 (0.010) 0.312 (0.020) 0.227 (0.014) 
  Siletz 0.101 (0.006) 0.226 (0.012) 0.089 (0.008) 
  Bull Island 0.092 (0.007) 0.259 (0.020) -0.062 (0.011) 
  Bandon 0.141 (0.008) 0.258 (0.019) -0.075 (0.011) 
PNW mean 0.125 (0.008) 0.283 (0.016) 0.090 (0.011) 
San Francisco Bay 
  Petaluma 0.064 (0.004) 0.286 (0.020) 0.162 (0.015) 
  Black John 0.089 (0.006) 0.245 (0.026) 0.153 (0.022) 
  San Pablo 0.080 (0.005) 0.259 (0.025) 0.113 (0.019) 
  Fagan 0.083 (0.004) 0.224 (0.016) 0.077 (0.014) 
  Coon Island 0.084 (0.004) 0.288 (0.021) 0.105 (0.016) 
  China Camp 0.054 (0.003) 0.251 (0.022) 0.106 (0.014) 
  Corte Madera 0.063 (0.007) 0.278 (0.013) 0.114 (0.014) 
SFB mean 0.074 (0.005) 0.262 (0.021) 0.119 (0.016) 
Southern California 
  Morro 0.072 (0.004) 0.213 (0.012) -0.051 (0.006) 
  Mugu 0.064 (0.002) 0.209 (0.006) 0.135 (0.006) 
  Seal Beach 0.081 (0.002) 0.315 (0.011) -0.083 (0.008) 
  Newport 0.118 (0.010) 0.240 (0.022) 0.000 (0.011) 
  Tijuana 0.075 (0.002) 0.229 (0.021) -0.033 (0.013) 
SCA mean 0.082 (0.005) 0.241 (0.015) -0.007 (0.009) 
 418 

3.5. Power Analysis 419 

Across sites, an average of 118.3 (SD = 56.7) total RTK-GPS ground points, stratified by 420 

mean elevation and NDVI, resulted in a LEAN model RMSE that was within 1 cm of the mean 421 

cross-validated RMSE, while an average of 87 total RTK-GPS points resulted in models within 2 422 

cm of the mean RMSE. Three sites (Corte Madera, China Camp, and Willapa) did not converge 423 

on the mean cross-validated RMSE and were excluded from the average. Grays Harbor needed 424 

the highest number of RTK-GPS points (236), while Black John required only 52 to build a 425 
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robust LEAN model. The median number of RTK-GPS points needed was 104. Figures for each 426 

site are provided as supplemental information (Fig. S1-S3).  427 

 428 

4. Discussion 429 

Consistent with previous studies, we found that lidar overestimated tidal marsh surface 430 

elevation at all our study sites. The bias ranged from 0.11-0.47 m (RMSE), which at the high end 431 

exceeds values for sites in South Carolina (0.15 m; Schmid et al., 2011) and Georgia (0.23 m; 432 

Hladik and Alber 2012), but is less than the bias found in a Florida marsh along the Gulf of 433 

Mexico (0.65 m, Medeiros et al., 2015). Lidar bias in our study varied by study region, likely 434 

because each region has distinct dominant vegetation communities (Table 1) with different 435 

canopy heights and densities (Schmid et al., 2011; Hladik and Alber, 2012; McClure et al., 436 

2016).  Additionally, lidar was acquired in different seasons which may also explain regional 437 

differences in initial error.   438 

The LEAN model reduced positive bias in lidar DEMs 40-75% across the 17 tidal 439 

marshes, with low variation in final RMSE (Fig. 4). By relying on a statistical approach to lidar 440 

error correction, LEAN was insensitive to temporal mismatches between NDVI and lidar 441 

datasets, evidenced by the low standard deviation in final RMSE across sites (0.018 m; an 82% 442 

reduction in RMSE variation across sites). LEAN successfully reduced lidar error across a wide 443 

variety of dominant marsh vegetation communities while maintaining high spatial resolution, and 444 

the mean RMSE of 0.072 m across all our sites is lower than previous attempts to correct lidar in 445 

tidal marshes. In comparisons with other correction methods, the accuracy of our LEAN model 446 

was followed by MEC (0.096 m RMSE), VC (0.10 m RMSE, for China Camp and Coon Island), 447 

and MBG (0.271 m RMSE). Unexpectedly, MBG resulted in increased mean RMSE across sites, 448 
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likely due to the addition of channel and mudflat features within the 5 m pixels. Because we 449 

modeled total lidar elevation errors, LEAN accounts for both random sensor error and the 450 

systematic influence of dense vegetation canopies. Our focus was to correct the positive bias 451 

across the marsh platform as our RTK-GPS dataset did not include points within channels or on 452 

mudflats; additional work is warranted to address lidar error in these important marsh features. 453 

 454 
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 455 

Fig. 4. Example results from each region (Pacific Northwest: Grays Harbor; San Francisco Bay: 456 
Petaluma; Southern California: Tijuana. (a) Uncorrected lidar digital terrain model (DEM; (b) 457 
model adjusted DEM, and (c) total adjustment. Elevation in m, National Vertical Datum of 1988. 458 
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 459 

LEAN (RMSE of 0.051 m) outperformed two prior efforts to correct lidar at China Camp 460 

that used vegetation correction methods. Schile et al. (2014) used the mean error for the 461 

dominant species (Salicornia pacifica) to correct the lidar DEM and achieved a RMSE of 0.12 462 

m. McClure et al. (2016) used a more detailed vegetation map and correction factors for five 463 

species of plants to create a modified DEM with a RMSE of 0.098 m. LEAN likely outperforms 464 

VC methods because NDVI captures variation in both plant canopy height and aboveground 465 

biomass that can influence lidar reflectance and canopy penetration. More important than the 466 

relatively small improvements in accuracy is that LEAN does not require time-consuming 467 

vegetation surveys and airborne photo interpretation or expensive hyperspectral data to develop 468 

correction factors for individual species or communities, making LEAN relatively easy and 469 

inexpensive to implement.  470 

The temporal mismatch between the RTK-GPS surveys and lidar acquisition is a 471 

potential source of uncertainty. Annual changes in tidal marsh elevations, however, occur at the 472 

millimeter-scale (2-8 mm/yr at our study sites, Thorne et al., 2015, Thorne et al., 2016) and the 473 

amount of instrument error in both the RTK-GPS (~2 cm) and lidar (>4 cm) is too large to 474 

robustly detect marsh elevation changes over relatively short time periods. A greater temporal 475 

mismatch is not necessarily an issue, provided the RTK-GPS surveys occur after the lidar 476 

acquisition; adjustments to the original lidar DEM using LEAN can be interpreted as both 477 

correcting for dense vegetation and updating the DEM for changes in surface elevation. 478 

Lidar-derived DEMs corrected using LEAN can be confidently used in mid-term (2050) 479 

SLR projections. NOAA recommends that DEMs used in sea-level rise (SLR) projections should 480 

be at least twice as accurate (using the 95% confidence interval, RMSE*1.96) as the SLR 481 
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increment being modeled (NOAA, 2010). Mean SLR projections for our study regions and the 482 

recommended DEM accuracies for 2030, 2050 and 2100 are provided (Table 6). The uncorrected 483 

lidar appears to have sufficient accuracy for 100-year projections across our SCA sites, but not 484 

our SFB or PNW sites illustrating that uncorrected lidar should be used with caution for 485 

assessing flooding risk to tidal marshes and other coastal zones without a correction for 486 

vegetation. Technological and analysis advances are necessary before lidar is capable of the 487 

accuracy needed for short-term (2030) projections, especially for areas with relatively low SLR 488 

projections as in the PNW.   489 

 490 

Table 6. Sea-level rise (SLR) projections (NRC, 2012) and recommended digital elevation model 491 
accuracy (root mean squared error [RMSE]) for San Francisco Bay (SFB), Southern California 492 
(SCA), and Pacific Northwest (PNW) study sites. 493 

 
SLR Projection (cm)  RMSE (cm) 

Year SFB/SCA PNW  SFB/SCA PNW 
2030 14.4 6.8  3.8 1.7 
2050 28.0 17.2  7.1 4.3 
2100 91.9 63.3  23.2 16.0 
 494 

Reliance on unadjusted lidar has consequences for both short and long term ecological 495 

applications for low slope tidal marshes. In the short term, LEAN-adjusted DEMs can correct 496 

projections of inundation frequency during the 24-hour tide cycle.  For example, at three 497 

representative sites the estimate of inundation duration for the mean elevation of each site ranged 498 

from 1.3 to 4 times longer using the LEAN adjusted DEM versus uncorrected lidar (results not 499 

shown). Small changes in duration of inundation may change productivity (Janousek et al., 2016) 500 

and community composition of marsh plants (Kirwan and Guntenspergen, 2012; Langley et al., 501 

2013), and affect wildlife that rely on intertidal habitats for nesting, foraging, and refugia 502 

(Shaughnessy et al., 2012; Takekawa et al., 2012).  503 
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In the long term, unadjusted DEMs can bias predictions of marsh persistence under SLR. 504 

Models like the Sea Level Affecting Marshes Model (SLAMM, Craft et al., 2009), Marsh 505 

Equilibrium Model (MEM; Morris et al., 2002), and Wetland Accretion Model for Ecosystem 506 

Resilience (WARMER, Swanson et al., 2013) all require an initial DEM with accurate starting 507 

elevation upon which to make future elevation projections under SLR. Sensitivity analysis of 508 

WARMER results indicate that 30-50% of the variance in final elevation is due to initial 509 

elevation (Thorne et al., 2015, Thorne et al., 2016). In comparing WARMER results to 2110 510 

with uncorrected DEMS and LEAN adjusted DEMs for three of our study sites (Grays Harbor, 511 

Petaluma, and Tijuana), we found WARMER predicted a loss of high marsh habitat 30 years 512 

earlier at Grays Harbor with the LEAN adjustment. At Petaluma, high marsh classified with the 513 

lidar DEM was reclassified as mid marsh with the LEAN DEM, and the transition to mudflat 514 

was predicted to be 10 years earlier, and at Tijuana the amount of habitat currently classified as 515 

high marsh was reduced by 46%, illustrating the importance of correcting lidar for marsh 516 

vegetation (results not shown, marsh classifications from Thorne et al. 2015 and Thorne et al., 517 

2016). 518 

LEAN was also robust to variation in NAIP image availability. We found that LEAN 519 

calibrated with NAIP imagery from years other than those of the lidar data performed as well as 520 

the LEAN corrections using lidar data and NAIP imagery from the same year. Due to the 521 

variance in correlation of NDVI between images, however, a LEAN model should not be 522 

calibrated with a NAIP image from one year and projected using a different year. Theoretically, 523 

the shorter the timespan between lidar and NAIP (or NDVI) data acquisitions, the more accurate 524 

the model corrections; however, the results seem robust to differences of several years, likely due 525 

site-specific model calibration and low interannual variation of marsh perennials. In addition, 526 
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NAIP images may be acquired during high tides or cloudy conditions in some years which will 527 

affect NDVI values, thus the capability of LEAN to use images from any recent year is 528 

especially useful.   529 

We suggest taking at least 40 RTK-GPS points per vegetation class (± mean elevation 530 

and ± mean NVDI) to produce a robust DEM using LEAN, and up to 60 per class if the marsh 531 

has greater spatial variation in plant density and height. This number of sample points (~120) 532 

would also be sufficient to run a cross-validation for assessing model performance. In addition, 533 

separate model calibrations should be performed in areas that have very different dominant 534 

vegetation. For instance, we recommend modeling salt, brackish, and freshwater marshes within 535 

an estuary separately as the relationship between lidar error and NDVI may vary across these 536 

different marsh types. From the power analysis, we found no relationship between marsh area 537 

and number of RTK-GPS needed for LEAN calibration. While our sites were generally small in 538 

area, this result highlights the importance of capturing the variation in NDVI and initial lidar 539 

DEM with the RTK-GPS surveys rather than ensuring a specific density of points. Additional 540 

RTK-GPS points should be collected in areas with complex vegetation communities and high 541 

variability in NDVI. Finally, to avoid errors related to lidar DEM resolution, we advise 542 

surveying elevation at least 1 pixel (m) away from areas with steep slope such as channels and 543 

scarps.  544 

 545 

5. Conclusion 546 

Airborne lidar provides invaluable elevation data by generating thousands of data points 547 

per hectare. However, some correction to lidar DEMs is required to offset the positive bias 548 

caused by the dense vegetation canopy in tidal marshes. The LEAN method for correcting lidar 549 
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data requires a relatively small dataset of ground elevation points for calibration and a spatial 550 

map indicative of vegetation density (e.g., NDVI).  The power analysis showed that on average 551 

120 RTK-GPS points were necessary for a robust LEAN model.  552 

LEAN could be applied to other habitat types where dense vegetation obstructs the 553 

ground surface and high vertical accuracy is needed. So long as a sufficient number of RTK-GPS 554 

data are available, our statistical approach to lidar correction should be robust. The flat terrain 555 

and dynamic coastal landscape necessitates that tidal marsh DEMs be highly accurate to be 556 

useful across ecological, geomorphological, and engineering applications. NDVI derived from 557 

commercially available satellite images could be used in place of the NAIP airborne images to 558 

expand our method to areas in the world not covered by NAIP imagery. 559 

 560 
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List of Figure Captions 731 

Fig. 1. Location of 17 tidal marsh study sites along the Pacific coast of the United States. Study 732 

sites represented a range of dominant tidal marsh vegetation, climate, and tidal ranges to test the 733 

applicability of model corrections across different vegetation types. 734 

Fig. 2. Boxplot of uncorrected lidar error (top) and errors from Lidar Elevation Adjustment using 735 

NDVI (LEAN) corrections (bottom) across study sites. Lidar error was calculated by subtracting 736 

RTK-GPS elevation from the lidar DEM. Box shading designates region (light grey: Pacific 737 

Northwest, white: San Francisco Bay, dark grey: Southern California). Sites are ordered from 738 

north to south. 739 

Fig. 3. Positive bias in lidar DEM before Lidar Elevation Adjustment using NDVI  (LEAN) 740 

correction (top) and after LEAN correction (bottom), with a 1:1 line. Units in m, NAVD88.  741 

Fig. 4. Example results from each region (Pacific Northwest: Grays Harbor; San Francisco Bay: 742 

Petaluma; Southern California: Tijuana. (a) Uncorrected lidar digital terrain model (DEM; (b) 743 

model adjusted DEM, and (c) total adjustment. Elevation in m, National Vertical Datum of 1988. 744 
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